3,705 research outputs found

    Representing Interlingual Meaning in Lexical Databases

    Full text link
    In today's multilingual lexical databases, the majority of the world's languages are under-represented. Beyond a mere issue of resource incompleteness, we show that existing lexical databases have structural limitations that result in a reduced expressivity on culturally-specific words and in mapping them across languages. In particular, the lexical meaning space of dominant languages, such as English, is represented more accurately while linguistically or culturally diverse languages are mapped in an approximate manner. Our paper assesses state-of-the-art multilingual lexical databases and evaluates their strengths and limitations with respect to their expressivity on lexical phenomena of linguistic diversity

    From confined spinons to emergent fermions: Observation of elementary magnetic excitations in a transverse-field Ising chain

    Get PDF
    We report on spectroscopy study of elementary magnetic excitations in an Ising-like antiferromagnetic chain compound SrCo2_2V2_2O8_8 as a function of temperature and applied transverse magnetic field up to 25 T. An optical as well as an acoustic branch of confined spinons, the elementary excitations at zero field, are identified in the antiferromagnetic phase below the N\'{e}el temperature of 5 K and described by a one-dimensional Schr\"{o}dinger equation. The confinement can be suppressed by an applied transverse field and a quantum disordered phase is induced at 7 T. In this disordered paramagnetic phase, we observe three emergent fermionic excitations with different transverse-field dependencies. The nature of these modes is clarified by studying spin dynamic structure factor of a 1D transverse-field Heisenberg-Ising (XXZ) model using the method of infinite time evolving block decimation. Our work reveals emergent quantum phenomena and provides a concrete system for testifying theoretical predications of one-dimension quantum spin models.Comment: 8 pages and 6 figure

    How brain-computer interface technology may improve the diagnosis of the disorders of consciousness: A comparative study

    Get PDF
    ObjectiveClinical assessment of consciousness relies on behavioural assessments, which have several limitations. Hence, disorder of consciousness (DOC) patients are often misdiagnosed. In this work, we aimed to compare the repetitive assessment of consciousness performed with a clinical behavioural and a Brain-Computer Interface (BCI) approach. Materials and methodsFor 7 weeks, sixteen DOC patients participated in weekly evaluations using both the Coma Recovery Scale-Revised (CRS-R) and a vibrotactile P300 BCI paradigm. To use the BCI, patients had to perform an active mental task that required detecting specific stimuli while ignoring other stimuli. We analysed the reliability and the efficacy in the detection of command following resulting from the two methodologies. ResultsOver repetitive administrations, the BCI paradigm detected command following before the CRS-R in seven patients. Four clinically unresponsive patients consistently showed command following during the BCI assessments. ConclusionBrain-Computer Interface active paradigms might contribute to the evaluation of the level of consciousness, increasing the diagnostic precision of the clinical bedside approach. SignificanceThe integration of different diagnostic methods leads to a better knowledge and care for the DOC

    Urban Needle Locator Mark I

    Get PDF
    The Urban Needle locator Mark I is a mapping and tracking system which detects syringes discarded in an environment and stores their unique-ID, GPS coordinates, and time-stamped data. Dirty needle refuse represents a modern problem and requires a modern solution. By using a combination of passive RFID tags, mobile antenna system and GPS sensors, the Mark I will produce a map of current needle refuse to be referenced by cleanup crews. Due to the immense scope of the problem (PHS mobile needle exchange estimates they retrieved 1.6 million used syringes in 2012 alone in Vancouver) - even small efficiency increases can produce large reductions in time spent on cleanup. For these reasons, it is critical that the Mark I is able to accurately locate syringes and produce reliable data that workers can use effectively. Additionally, as the Mark I is an engineered product operating in an urban environment, it is essential that it conforms to safety and engineering standards mandated by local governments. The following document quantitatively outlines all of the necessary requirements for the system to operate successfully in Canada

    Intonation processing in congenital amusia: discrimination, identification and imitation

    Get PDF
    This study investigated whether congenital amusia, a neuro-developmental disorder of musical perception, also has implications for speech intonation processing. In total, 16 British amusics and 16 matched controls completed five intonation perception tasks and two pitch threshold tasks. Compared with controls, amusics showed impaired performance on discrimination, identification and imitation of statements and questions that were characterized primarily by pitch direction differences in the final word. This intonation-processing deficit in amusia was largely associated with a psychophysical pitch direction discrimination deficit. These findings suggest that amusia impacts upon one’s language abilities in subtle ways, and support previous evidence that pitch processing in language and music involves shared mechanisms

    Diquat Derivatives: Highly Active, Two-Dimensional Nonlinear Optical Chromophores with Potential Redox Switchability

    Get PDF
    In this article, we present a detailed study of structure−activity relationships in diquaternized 2,2′-bipyridyl (diquat) derivatives. Sixteen new chromophores have been synthesized, with variations in the amino electron donor substituents, π-conjugated bridge, and alkyl diquaternizing unit. Our aim is to combine very large, two-dimensional (2D) quadratic nonlinear optical (NLO) responses with reversible redox chemistry. The chromophores have been characterized as their PF_6^− salts by using various techniques including electronic absorption spectroscopy and cyclic voltammetry. Their visible absorption spectra are dominated by intense π → π^* intramolecular charge-transfer (ICT) bands, and all show two reversible diquat-based reductions. First hyperpolarizabilities β have been measured by using hyper-Rayleigh scattering with an 800 nm laser, and Stark spectroscopy of the ICT bands affords estimated static first hyperpolarizabilities β_0. The directly and indirectly derived β values are large and increase with the extent of π-conjugation and electron donor strength. Extending the quaternizing alkyl linkage always increases the ICT energy and decreases the E_(1/2) values for diquat reduction, but a compensating increase in the ICT intensity prevents significant decreases in Stark-based β_0 responses. Nine single-crystal X-ray structures have also been obtained. Time-dependent density functional theory clarifies the molecular electronic/optical properties, and finite field calculations agree with polarized HRS data in that the NLO responses of the disubstituted species are dominated by ‘off-diagonal’ β_(zyy) components. The most significant findings of these studies are: (i) β_0 values as much as 6 times that of the chromophore in the technologically important material (E)-4′-(dimethylamino)-N-methyl-4-stilbazolium tosylate; (ii) reversible electrochemistry that offers potential for redox-switching of optical properties over multiple states; (iii) strongly 2D NLO responses that may be exploited for novel practical applications; (iv) a new polar material, suitable for bulk NLO behavior

    pH Dependent Antimicrobial Peptides and Proteins, Their Mechanisms of Action and Potential as Therapeutic Agents

    Get PDF
    Antimicrobial peptides (AMPs) are potent antibiotics of the innate immune system that have been extensively investigated as a potential solution to the global problem of infectious diseases caused by pathogenic microbes. A group of AMPs that are increasingly being reported are those that utilise pH dependent antimicrobial mechanisms and here, we review research into this area. This review shows that these antimicrobial molecules are produced by a diverse spectrum of creatures, including vertebrates and invertebrates, and are primarily cationic although a number of anionic examples are known. Some of these molecules exhibit high pH optima for their antimicrobial activity but in most cases, these AMPs show activity against microbes that present low pH optima, which reflects the acidic pH generally found at their sites of action, particularly the skin. The modes of action used by these molecules are based on a number of major structure / function relationships, which include metal ion binding, changes to net charge and conformational plasticity, and primarily involve the protonation of histidine, aspartic acid and glutamic acid residues at low pH. The pH dependent activity of pore forming antimicrobial proteins involves mechanisms that generally differ fundamentally to those used by pH dependent AMPs, which can be described by the carpet, toroidal pore and barrel-stave pore models of membrane interaction. A number of pH dependent AMPs and antimicrobial proteins have been developed for medical purposes and have successfully completed clinical trials, including kappacins, LL-37, histatins and lactoferrin, along with a number of their derivatives. Major examples of the therapeutic application of these antimicrobial molecules include wound healing as well as the treatment of multiple cancers and infections due to viruses, bacteria and fungi. In general, these applications involve topical administration, such as the use of mouth washes, cream formulations and hydrogel delivery systems. Nonetheless, many pH dependent AMPs and antimicrobial proteins have yet to be fully characterized and these molecules, as a whole, represent an untapped source of novel biologically active agents that could aid fulfillment of the urgent need for alternatives to conventional antibiotics, helping to avert a return to the pre-antibiotic era

    Human Herpesvirus-8 Infection Leads to Expansion of the Preimmune/Natural Effector B Cell Compartment

    Get PDF
    BACKGROUND: Human herpesvirus-8 (HHV-8) is the etiological agent of Kaposi's sarcoma (KS) and of some lymphoproliferative disorders of B cells. Most malignancies develop after long-lasting viral dormancy, and a preventing role for both humoral and cellular immune control is suggested by the high frequency of these pathologies in immunosuppressed patients. B cells, macrophages and dendritic cells of peripheral lymphoid organs and blood represent the major reservoir of HHV-8. Due to the dual role of B cells in HHV-8 infection, both as virus reservoir and as agents of humoral immune control, we analyzed the subset distribution and the functional state of peripheral blood B cells in HHV-8-infected individuals with and without cKS. METHODOLOGY/PRINCIPAL FINDINGS: Circulating B cells and their subsets were analyzed by 6-color flow cytometry in the following groups: 1- patients HHV-8 positive with classic KS (cKS) (n = 47); 2- subjects HHV-8 positive and cKS negative (HSP) (n = 10); 3- healthy controls, HHV-8 negative and cKS negative (HC) (n = 43). The number of B cells belonging to the preimmune/natural effector compartment, including transitional, pre-naïve, naïve and MZ-like subsets, was significantly higher among HHV-8 positive subjects, with or without cKS, while was comparable to healthy controls in the antigen-experienced T-cell dependent compartment. The increased number of preimmune/natural effector B cells was associated with increased resistance to spontaneous apoptosis, while it did not correlate with HHV-8 viral load. CONCLUSIONS/SIGNIFICANCE: Our results indicate that long-lasting HHV-8 infection promotes an imbalance in peripheral B cell subsets, perturbing the equilibrium between earlier and later steps of maturation and activation processes. This observation may broaden our understanding of the complex interplay between viral and immune factors leading HHV-8-infected individuals to develop HHV-8-associated malignancies

    Calcineurin regulates innate antifungal immunity in neutrophils

    Get PDF
    Patients taking immunosuppressive drugs, like cyclosporine A (CsA), that inhibit calcineurin are highly susceptible to disseminated fungal infections, although it is unclear how these drugs suppress resistance to these opportunistic pathogens. We show that in a mouse model of disseminated Candida albicans infection, CsA-induced susceptibility to fungal infection maps to the innate immune system. To further define the cell types targeted by CsA, we generated mice with a conditional deletion of calcineurin B (CnB) in neutrophils. These mice displayed markedly decreased resistance to infection with C. albicans, and both CnB-deficient and CsA-treated neutrophils showed a defect in the ex vivo killing of C. albicans. In response to the fungal-derived pathogen-associated molecular pattern zymosan, neutrophils lacking CnB displayed impaired up-regulation of genes (IL-10, Cox2, Egr1, and Egr2) regulated by nuclear factor of activated T cells, the best characterized CnB substrate. This activity was Myd88 independent and was reproduced by stimulation with the β(1,3) glucan curdlan, indicating that dectin-1, rather than toll-like receptors, is the upstream activator of calcineurin. Our results suggest that disseminated fungal infections seen in CsA-treated patients are not just a general consequence of systemic suppression of adaptive immunity but are, rather, a result of the specific blockade of evolutionarily conserved innate pathways for fungal resistance
    corecore